Transport Layer

Dr. Xiqun Lu
Co“ege of Computer Science
Zhej lang University

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

The Transport Layer

* Together with the network layer, the transport layer 1s the
heart of the protocol hierarchy.

— The transport layer provides efficient, reliable, cost-effective data
transport from the source machine to the destination machine.

— The transport layer provides end-to-end connectivity across the
network.

Layer

Name of unit

exchanged
- Application protocol __
7 | Application |=-----------" | Application | APDU
Interface I I
6 | Presentation |a--—--———--—- Presentation protocol . »| Presentation | PPDU end-to-end
. Session protocol .
5 Session |- -—m—oo oo =| Session SPDU
4 Transport |=----—-—----- Transportprotocol | __________ =| Transport TPDU
Communication subnet boundary
Y 4 Internal subnet protocol N\ v
3 Network I Network <= Network |=1--= Network Packet
2 Data link 11" Datalink |[=——m| Datalink |={--+= Data link Frame chained
. . Y . . .
1 Physical 1T Physical |=-——=| Physical |=«{--+= Physical Bit
Host A Router Router Host B
\- J

——— Network layer host-router protocol
Data link layer host-router protocol
Physical layer host-router protocol

Figure 1-20. The OSI reference model.

The Relationship of the Network, Transport,
and Application Layers

Host 1 Host 2
Application Application
(or session) Application/transport (or session)
layer Transport | interface layer
«~ address |,/
Segment
Transport N _ | Transport
entity Transport entity
i protocol l
Network — haN
address Transport/network
Network layer interface Network layer

Figure 6-1. The network, transport, and application layers.

The Transport Service

* Two types of transport service

— Connection-oriented transport service.
» Connections has three phases: establishment, data transfer, and release

— Connectionless transport service
* The transport layer service 1s so similar to the network layer service,
why are there two distinct layers?

— The transport code runs entirely on the users’ machines, but the network layer
mostly runs on the routers. The users have no real control over the network layer.

— The network service is generally unreliable.

— The only possibility is to put on top of the network layer another layer that
improves the quality of the service.

* In a connectionless network, if packets are lost or mangled, the transport entity can detect
the problem and compensate for it by using retransmissions.

* In a connection-oriented network, if a transport entity is informed halfway through a
long transmission that its network connection has been abruptly terminated, with no
indication of what has happened to the data currently in transit, it can set up a new
network connection to the remote transport entity. Using this new network connection, it
can send a query to its peer asking which data arrived and which did not, and knowing
where it was, pick up from there it left off.

Transit Units of Different Layers

Transport layer: segment or TPDU (Transport Protocol Data Unit)
Network layer: packet

Data link layer: frame

Physical layer: bit

Frame Packet Segment
header header header
’/ // f/
;/’
Segment payload
- Packet payload -
- Frame payload

Figure 6-3. Nesting of segments, packets, and frames.

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

The Internet Transport Protocols

* The Internet has two main protocols 1n the transport layer

— UDP (User Datagram Protocol, connectionless protocol): It does
nothing beyond sending packets between applications. It typically
runs in the operating system.

— TCP (connection-oriented protocol): It does almost everything. It
makes connections and adds reliability with retransmission, along
with flow control and congestion control.

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols

— UDP

* RTP (Real-Time Transport Protocol) & RTCP (Real-time Transport Control
Protocol)

— TCP

UDP

 UDP: connectionless transport protocol

— RFC768
— UDP header (8 bytes)
- 32 Bits -
I l I I I I I | I I I I I l I | I I I I I I I | I l I I I I I
Source port Destination port
UDP length UDP checksum

Figure 6-27. The UDP header.
* The two ports serve to identify the endpoints within the source
and destination machines.

— With these two ports, it delivers the embedded segment to the correct
application.

— The source port is primarily needed when a reply must be sent back to the
source. By copying the Source Port field from the incoming segment into the
Destination Port field of the outgoing segment.

UDP (1)

* UDP header (8 bytes)
— The UDP length field includes the 8-byte header and the data.

* The minimum length 1s 8 bytes, to cover the header.

* The maximum length 1s 65,515 bytes, which 1s lower than the largest
number that will fit in 16 bits because of the size limit on IP packets.

— The UDP checksum field (optional) is to provide extra reliability.

* It checksums the header, data, and a conceptual IP pseudoheader.

32 Bits -

'

Source port Destination port

UDP length UDP checksum

Figure 6-27. The UDP header.

UDP (11I)

* Performing the checksum computation
— The Checksum field is set to zero.

— The data field 1s padded out with an additional zero byte if its
length is an odd number of bytes.

— The checksum algorithm is simply to add up all the 16-bit words
(note here a word = 16 bits = 2 bytes) 1n one’s complement and to
take the one’s complement of the sum.

32 Bits

'
Y

Source port Destination port

UDP length UDP checksum

Figure 6-27. The UDP header.

UDP (1V)

* The IPv4 pseudoheader

— The 32 bit IPv4 addresses of the source and destination machines.

* Including the pseudoheader in the UDP checksum computation helps detect
mis-delivered packets, but including it also violates the protocol hierarchy
since the IP addresses 1n it belong to the IP layer, not to the UDP layer.

— The protocol number of UDP (17)
— The byte count of the UDP segment (including the header).

32 Bits -

A

Source address

Destination address

00000000 Protocol = 17 UDP length

Figure 6-28. The IPv4 pseudoheader included in the UDP checksum.

An UDP Example

A WLAN - o x
3R GWE(E) WAV BREG) EERC OIA) FKIHS) BIEY) FEW) IEM #EIH)
Lo fio) I REQeEsEF LS = Q68 H
E% Ctrl-/> -] +
No. Time Source Destination Protocol Length Info
25 11.890698 10.162.54.132 203.119.205.54 SSL 97 Continuation Data
26 11.926276 203.119.205.54 10.162.54.132 TCP 60 443 - 54650 [ACK] Seg=1 Ack=45 Win=126 Len=0
27 11.944370 203.119.205.54 18.162.54.132 SSL 125 Continuation Data
28 11.998674 10.162.54.132 283.119.2685.54 TCP 54 54650 » 443 [ACK] Seq=45 Ack=72 Win=515 Len=8
r 29 12.300128 10.162.54.132 239.255.255.250 SSDP 216 M-SEARCH * HTTP/1.1
| 30 12.300128 10.162.54.132 239.255.255.250 SSDP 215 M-SEARCH * HTTP/1.1
} 31 12.967681 10.162.54.132 283.119.205.54 TCP 55 [TCP Keep-Alive] 54650 > 443 [ACK] Seq=44 Ack=72 Win=515 Len=1[Reassembl..
i 32 13.002493 203.119,205.54 18.162.54.132 TCP 66 [TCP Keep-Alive ACK] 443 -+ 5465@ [ACK] Seq=72 Ack=45 Win=126 Len=@ SLE=4..
+ 33 13.3034981 10.162.54.132 239.255,255.250 SSDP 216 M-SEARCH * HTTP/1.1
i 34 13 3IA3492 1A 187 54 132 239 255 255 7GA Ssnp 215 M-SFARCH * HTTR/1 1

Frame 29: 216 bytes on wire (1728 bits), 216 bytes captured (1728 bits) on interface \Device\NPF_{A24DE49A-D22D-4600-9797-23DASF@C48CA}, id @

Ethernet II, Src: IntelCor_de:dd:de (34:2e:b7:de:dd:de), Dst: IPvdmcast_7f:ff:fa (01:00:5e:7f:ff:fa)
Internet Protocol Version 4, Src: 10.162.54.132, Dst: 239,255,255.250
v User Datagram Protocol, Src Port: 65334, Dst Port: 1968

Source Port: 65334

Destination Port: 1968

Length: 182

Checksum: ©xb7e4 [unverified]

[Checksum Status: Unverified]

[Stream index: 8]

[Timestamps]

| UDP payload (174 bytes)|

Simple Service Discovery Protocol

9820 f fa ff 36 07 6C b7 e4 4d 2d 53 45 41 52 ---6- 1 - -M-SEAR
AB36 43 48 2@ 2a 20 48 54 54 50 2f 31 2e 31 @d Qa 48 CH * HTT P/1.1--H
2846 Af 53 54 3a 20 32 33 39 2e 32 35 35 2e 32 35 35 0ST: 239 .255.255
G056 2e 32 35 30 3a 31 39 30 30 Od @a 4d 41 4de 3a 20 .250:190 @- -MAN:

ae66 22 73 73 64 70 3a 64 69 73 63 6Ff 76 65 72 22 @d "ssdp:di scover”

9676 ©@a 4d 58 3a 20 31 @d @a 53 54 3a 28 75 72 6e 3a ‘MX: 1-- ST: urn:
8036 64 69 61 6C 2d 6d 75 6C 74 69 73 63 72 65 65 66 dial-mul tiscreen
8090 2d 6f 72 67 3a 73 65 72 76 69 63 65 3a 64 69 61 -org:ser vice:dia
BBaB 6c 3a 31 @d @a 55 53 45 52 2d 41 47 45 4e 54 3a 1:1--USE R-AGENT:

0 ' Details at: https:/Swew, wireshark, org/docs/wsug himl chunked/ChAdvChecksums, himl (udp, checksum), 2 byte(s)

n L g niTiEs

|| #al: 12987 - DR: 12987 (100, 0%

v

|| EIE: Delaull

14:51

E 0211116

The 1Pv4 Datagram

The header has a 20-byte fixed part and a variable-length optional part.

The bits are transmitted from left to right and top to bottom. This 1s
“big-endian” network byte order.

- 32 Bits -
T T S T T S T S M S R A T T S S T S S EN S SO SO S S N
Version IHL Differentiated services Total length
|dentification [F) hlil Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

(
))

- Options (0 or more words)

Figure 5-46. The IPv4 (Internet Protocol) header.,

UDP in IPv4 Packet

A FWLAN - X
XHHF) RIS ME(V) BEG) RO HA) f0tS) EBIEY) XTEW) IAM #EH)
N80 XN Qe=sEFI = aqqfE
LIEEESS Ctrl-/> =
No. Time Source Destination Protocol Length Info A
25 11.890698 10.162.54.132 203.119.205.54 SSL 97 Continuation Data
26 11.926276 203.119.205.54 10.162.54.132 TCP 60 443 - 54650 [ACK] Seq=1 Ack=45 Win=126 Len=0
27 11.9443760 203.119.205.54 10.162.54.132 SSL 125 Continuation Data
28 11.998674 10.162.54,132 203.119,205.54 TCP 54 54650 > 443 [ACK] Seq=45 Ack=72 Win=515 Len=0
r 29 12.300128 10.162.54.132 239.255.255.250 SSDP 216 M-SEARCH * HTTP/1.1
| 30 12.300128 10.162.54.132 239.255.255.250 SSDP 215 M-SEARCH * HTTP/1.1
! 31 12.967681 10.162.54.132 203.119.205.54 TCP 55 [TCP Keep-Alive] 54650 - 443 [ACK] Seq=44 Ack=72 Win=515 Len=1[Reassembl..
1 32 13.002493 203.119,205.54 10.162.54,132 TCP 66 [TCP Keep-Alive ACK] 443 - 54650 [ACK] Seq=72 Ack=45 Win=126 Len=@ SLE=4..
+ 33 13.303491 10.162.54.132 239.255.255.250 SSDP 216 M-SEARCH * HTTP/1.1
i 34 13 303497 1A 162 54 132 239 255 7255 75Q SsSnp 215 M-SFARCH * HTTP/1 1 hd
~ Internet Protocol Version 4, Src: 10.162.54.132, Dst: 239.255.255.258 n
9100 = Version: 4
.... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: ©x0@ (DSCP: CS@, ECN: Not-ECT)
Total Length: 202
Identification: @x56f@ (22256)
Flags: 0x00
Fragment Offset: @
Time to Live: 1
Protocol: UDP (17)
Header Checksum: 6x0000 [validation disabled]
[Header checksum status: Unverified]
Source Address: 10.162.54.132
Destination Address: 239.255.255.250
v~ User Datagram Protocol, Src Port: 65334, Dst Port: 1900
Source Port: 65334 v
0016 08 ca 56 fo 00 @0 01 Kl 66 00 Pa a2 36 84 ef ff VARRE - | 6 "
ff fa ff 36 07 6c 80 b6 b7 ed4 4d 2d 53 45 41 52 6-1 M-SEAR
43 48 20 2a 20 48 54 54 50 2f 31 2e 31 0d 9a 48 CH * HTT P/1.1--H
4f 53 54 3a 26 32 33 39 2e 32 35 35 2e 32 35 35 0OST: 239 .255.255
2e 32 35 30 3a 31 39 30 30 Od Pa 4d 41 4e 3a 20 .250:190 O--MAN:
v
@ 7 Protocol (ip.prote), 1 byte(s) Sr4l: 28498 « EEaR: 28408 (100. 0%) BLH: Default

ﬂ P EENHHTEE f . : (S %Jﬁfim -

UDP (V)

e What UDP does not do

— Flow control, congestion control, or retransmission upon receipt of
a bad segment.

e What UDP does do

— To provide an interface to the IP protocol with the added feature of
de-multiplexing multiple processes using the ports.

— Optional end-to-end error detection (~ checksum)

* Which application uses the UDP protocol
— DNS (Domain Name System, Chapter 7)

— SSDP (Simple Service Discovery Protocol)

* The SSDP protocol can discover Plug & Play devices.

* SSDP 1s HTTP like protocol and work with NOTIFY and M-SEARCH
methods.

Real-Time Transport Protocol (I)

 RTP (Real-time Transport Protocol)
— RFC3550
— Itis a transport protocol but just happens to be implemented in the application
layer.
* Two aspects of real-time transport

— The RTP protocol for transporting audio and video data in packets

— How the receiver plays out the audio and video at the right time?

Ethernet IP UDP RTP
header header header header

User { Multimedia application

space RTP
Socket interface RTP payload
UDP
Ker{r:“u)s IP UDP payload ——
Ethernet - IP payload »-
- Ethernet payload -

(a) (b)

Figure 6-30. (a) The position of RTP in the protocol stack. (b) Packet nesting.

RTP (1)

The basic function of RTP is to multiplex several real-time data streams
onto a single stream of UDP packets. The UDP stream can be sent to a single
destination (unicasting) or to multiple destination (multicasting).

Since there i1s no guarantees about delivery, and packets may be lost, delayed,
corrupted, etc. Each packet sent in an RTP stream 1s given a number one
higher than its predecessor.

— This numbering allows the destination to determine if any packets are missing.

— If a packet is missing, either skip (a video frame) or interpolation (audio data).

— RTP has no acknowledgements.
Each RTP payload may contain multiple samples, and they may be coded
any way that the application wants.

— RTP provides a header field to specify the encoding scheme.
To associate a time-stamping with the first sample in each packet. This

mechanism allows the destination to do a small amount of buffering and
play each sample the right number of millisecond after the start of the stream.

— To reduce the effect of variation in network delay

— To synchronize multiple streams.

The RTP Header (1)

- 32 bits -
| || N I S O O B
Ver. CcC M Payload type Sequence number
Timestamp
Synchronization source identifier

|
2

|

|

e o] |
|

|

|

|

It consists of three 32- bit words and potentially some extensions.

Figure 6-31. The RTP header.

The RTP Header (1I)

1) The Version field: 2

2) The P bit indicates that the packet has been padded to a multiple of 4
bytes. The last padding byte tells how many bytes were added.

3) The X bit indicates that an extension header is present.

4) The CC field tells how many contributing sources are present, from 0 to
15.

5) The M bit field i1s an application-specific marker bit.
6) The Payload type field tells which encoding algorithm has been used.

7) The Sequence number is just a counter that is incremented on each RTP
packet sent. It 1s used to detect lost packets.

8) The Timestamp is produced by the stream’s source to note when the 1%
sample 1n the packet was made.

9) The Synchronization source identifier tells which stream the packet
belongs to.

10) The Contributing source identifier, if any, are used when mixers are
present in the studio.

RTCP

* The RTCP (Real-time Transport Control Protocol) is a little
sister protocol of RTP.
— RFC3550
— To handle feedback, synchronization, and the user interface.
— It does not transport any media samples.

Playout with Buffering and Jitter
Control

Packet departs source 2 4 6(|7||8

Packet arrives at buffer 1 2 314]|5 H 7 Jitter

Packet removed from buffer |- Time in buffer -:B 4 BH EBE
AR N N NN TR SR R N

- *-—-*Eap in playback
Lo 0 0 A NN N S R

0 5 10 15 20
Time (sec)

Figure 6-32. Smoothing the output stream by buffering packets.

¢ A key consideration for smooth playout is the playback point, or how long to wait
at the receiver for media before playing it out. Deciding how long to wait depends
on the jitter.

¢ To pick a good playback point, the application can measure the jitter by looking at
the difference between the RTP timestamps and the arrival time, and can adapt the
playback point according to the change of delay over time.

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP

— TCP
* TCP segment header

* TCP connection establish
* TCP sliding window

* TCP timer management

* TCP congestion control

* BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP

* TCP (Transmission Control Protocol) was designed to
provide a reliable end-to-end byte stream over an
unreliable internetwork.

* An internetwork may have wildly different topologies,

bandwidths, delays, packet sizes, and other parameters 1n
different parts.

* TCP was designed to dynamically adapt to properties of the
internetwork and to be robust 1n the face of many kinds of
failures.

— RFC793, RFC793+, RFC1122 (clarifications and bug fixes),
RFC1323 (extensions for high-performance), RFC2018 (selective
acknowledgement), RFC 2581 (congestion control), RFC2873
(repurposing of header fields for quality of service), RFC2988

(improved retransmission timers), RFC 3168 (explicit congestion
control)

The TCP Service Model

TCP service 1s obtained by both the sender and the receiver
creating end points, called sockets.

Each socket has a socket number (address) consisting of
the IP addressing of the host and a 16-bit number local to
that host, called a port.

Connections are 1dentified by the socket identifiers at both
ends, that 1s, (socketl, socket2).

All TCP connections are full duplex and point-to-point.

TCP does not support multicasting and broadcasting.

The TCP Service Model (II)

A TCP connection 1s a byte stream, not a message stream.
Message boundaries are not preserved end to end.

— For example, if the sending process does four 512-byte writes to a
TCP stream, these data may be delivered to the receiving process
as four 512-byte chunks, two 1024-byte chunks, one 2048-byte
chunk.

IP header TCP header
\/

A B C 1D A B COD

(a) (b)

Figure 6-35. (a) Four 512-byte segments sent as separate IP datagrams. (b) The
2048 bytes of data delivered to the application in a single READ call.

The TCP Service Model (I1I)

When an application passes data to TCP, TCP may send it
immediately or buffer it.

— TCP may send data immediately (with the PUSH flag)

When an application has high priority data that should be
processed immediately, the sending application can put some
control information in the data stream and give 1t to TCP along

with the URGENT f{lag.

When the urgent data are received at the destination, the
recelving application is interrupted so 1t can stop whatever it was
doing and read the data stream to find the urgent data.

The end of the urgent data 1s marked so the application knows
when 1t 1s over. The start of the urgent data 1s not marked. It 1s up
to the application to figure that out.

Some Assigned Ports for Well-known
Applications

* The list of well-known ports 1s given at www.1ana.org.

Port | Protocol Use
20, 21 FTP File transfer
22 | SSH Remote login, replacement for Telnet

25 | SMTP Email
80 | HTTP World Wide Web
110 | POP-3 Remote email access

143 | IMAP Remote email access

443 | HTTPS Secure Web (HTTP over SSL/TLS)
543 | RTSP Media player control

631 | IPP Printer sharing

Figure 6-34. Some assigned ports.

TCP
e The TCP Protocol

— The form of data exchange: segment
— Include: a fixed 20-byte header + <optional> + <0-N data bytes>

— Two limits restrict the segment size:
* Each segment, including the TCP header, must fit in the 65515-byte
IP payload (65535 — 20).
* Each link has an MTU (Maximum Transfer Unit)
Packet (with length)

%I 1400 F— _?'g__ﬂ %

_ T
SDurcf‘ L‘IW 1200"_ -~ “Try 900"~~~ . Destination

— e —
—
— —

Figure 5-44. Path MTU discovery.

TCP

e The TCP Protocol

— The basic TCP protocol: the sliding window protocol with
dynamic window size

 Although this protocol sounds simple, there are many problems to
solve.

* 1) Segment can arrive out of order, so bytes 3072-4095 can arrive but
cannot be acknowledged because bytes 2048-3071 have not turned up
yet.

* 2) Segments can also be delayed so long in transit that the sender
times out and retransmits them. The retransmissions may include
different byte ranges than the original transmission, requiring careful
administration to keep track of which bytes have been correctly
received so far.

The TCP Segment Header

A key feature of TCP, and one that dominants the protocol
design, 1s that every byte on a TCP connection has its own 32-bit
sequence number.

— The sequence number space is byte-based rather than segment-based.
Every segment begins with a fixed-format, 20-byte header.
The fixed header may be followed by header options..

After the options, if any, up to 65535 — 20 (the IP header)— 20
(the TCP header) = 65495 data bytes may follow.

Segments without any data are legal and are commonly used for
acknowledgements and control messages.

The TCP Segment Header

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP C|E|UIAIP|R|S|F
header WICIR|C|S|S|Y|I Window size
length RIE|G|K|H|[T|N|N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Figure 6-36. The TCP header.

The TCP Segment Header (1)

* 1) The Source port (16 bits) and Destination port (16 bits)
fields 1identify the local end points of the connection
— A TCP endpoint is uniquely identified by its IP address and 16-bit
port number.

— The connection 1dentifier 1s a 5 tuple because it consists of five
pieces of information: the protocol (TCP), source IP, and source
port, and destination IP and destination port.

* 2) The Sequence number (32 bits) and Acknowledgement
number (32 bits) fields

— The Acknowledgement number specifies the next in-order byte
expected, not the last byte correctly received.

— It is a cumulative acknowledgement because i1t summarizes the
received data with a single number.

The TCP Segment Header (11)

e 3) The TCP header length (4 bits): tells how many 32-bit
words are contained in the TCP header.

— This information 1s needed because the Options field is of variable
length, so the header is, too.

— Technically, this field really indicates the start of the data within
the segment, measured in 32-bit words.

* 4) The not used 4-bit field

The TCP Segment Header

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP C|E|UIAIP|R|S|F
header WICIR|C|S|S|Y|I Window size
length RIE|G|K|H|[T|N|N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Figure 6-36. The TCP header.

The TCP Segment Header (111)

* 5) eight 1-bit fields

— CWR and ECE are used to signal congestion when ECN (Explicit
Congestion Notification) is used. [RFC 3168]

* ECE i1s set to signal an ECN-Echo to a TCP sender to tell it to slow down when
the TCP receiver gets a congestion indication from the network.

 CWR s set to signal Congestion Window Reduced from the TCP sender to the
TCP receiver so that it knows the sender has slowed down and can stop sending

the ECN-Echo.

— URG 1s set to 1 1f the Urgent pointer 1s in use. The Urgent pointer is used
to indicate a byte offset from the current sequence number at which
urgent data are to be found. (7= : Urgent pointer & [7] 1) /& 7 1L HY)
?DW@ MA RSP AR WES .)

* For example, suppose the current sequence number is 1000, and if urgent pointer
= 10, then the end point of urgent data in this byte stream 1s 1000 + 10 = 1010.
— The ACK bit 1s set to 1 to indicate that the Acknowledgement number 1s
valid. If ACK is 0, the segment does not contain an acknowledgement, so
the Acknowledgement number field is ignored.

The TCP Segment Header (1V)

« 5) eight 1-bit fields

— The PSH bit indicates PUSHed data. The receiver 1s hereby kindly
requested to deliver the data to the application upon arrival and not
buffer it until a full buffer.

— The RST bit is used to abruptly reset a connection that has become
confused due to a host crash or some other reason. It 1s also used to
reject an invalid segment or refuse an attempt to open a connection.

— The SYN bit 1s used to establish connections.

* The connection request has SYN = 1 and ACK= 0.

* SYN =1 and ACK = 1: the connection reply does bear an
acknowledgement.

* In essence, the SYN bit is used to denote both CONNECTION
REQUEST and CONNECTION ACCEPTED, with the ACK bit used
to distinguish between those two possibilities.

The TCP Segment Header (V)

* 5) eight 1-bit fields

— The FIN bit 1s used to release a connection. It specifies that the
sender has no more data to transmit. However, after closing a
connection, the closing process may continue to receive data
indefinitely. Both SYN and FIN segments have sequence numbers
and are thus guaranteed to be processed in the corrected order.

* 6) The Window size field (16 bits) tells how many bytes
may be sent starting at the byte acknowledged.
— A window size field of 0 1s legal and says that the bytes up to and
including Acknowledgement number — 1 have been received, but

that the receiver has not had a chance to consume the data and
would like no more data for the moment.

— In TCP, acknowledgement and permission to send additional data
are completely decoupled.

The TCP Segment Header (VI)

* 7) Checksum (16 bits) provides extra reliability. It
checksum the header, the data and a conceptual pseudo-
header 1n exactly the same way as UDP, except that the
pseudo-header has the protocol number for TCP (6) and the

checksum 1s mandatory.
~ 32 Bits -

Source address

Destination address

00000000 Protocol = 6 TCP segment length

The pseudoheader of TCP

The TCP Segment Header (VII)

8) The Options field: the options are of variable length, fill a multiple
of 32 bits by using padding with zeros, and may extended to 40 bytes
to accommodate the longest TCP header that can be specified.

— A widely used option is the one that allows each host to specify the MSS
(Maximum Segment Size) it is willing to accept.
 If a host does not use this option, it defaults to a 536-byte load. All Internet hosts are
required to accept TCP segments of 536+20 = 556 bytes.
— The window scale option allows the sender and receiver to negotiate a window
scale factor at the start of a connection.

 This option 1s especially useful for lines with high bandwidth, high delay, or both. Large
window size would allow the sender to keep pumping data out.
— The timestamp option carries a timestamp sent by the sender and echoed by the
receiver.

It is used to compute round-trip time samples that are used to estimate when a packet has
been lost.

 Itis also used as a logical extension of the 32-bit sequence number.

— The SACK (Selective ACKnowledgement) option

* It supplements the Acknowledgement number and is used after a packet has been lost but
subsequent (or duplicate) data has arrived.

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP

— TCP

* TCP segment header

* TCP connection establish
* TCP sliding window

* TCP timer management

* TCP congestion control

* BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Connection Establishment: Three Way Handshake

* Connections are established in TCP by means of the three-way
handshake.

Host 1 Host 2

W
1) Note that a SYN segment

consumes 1 byte of sequence
space so that it can be
acknowledged unambiguously.
2) The initial sequence number
chosen by each host should
cycle slowly. This rule is to
protect against delayed
duplicated packets.

- Time
<@
=
0
m
O

(SEQ = x

+T,ACK:},+”

(@)

TCP Connection Establishment (I)

* Step 1: SYN — for establishing a connection

— Client sends a request segment to the server

— Request segment consists only of TCP Header with an empty payload.
* Maybe?
— Then, it waits for a reply segment from the server.

* Request segment contains the following information in TCP

header:
— 1. Initial sequence number (randomly chosen by the client)

— 2. SYN bit set to 1. (to indicate the server that this segment contains the
initial sequence number used by the client)

— 3. Maximum segment size (the largest data chunk that client can send
and receiver from the server, contained in the Options field)

— 4. Receiving window size (the limit of unacknowledged data that can be
sent to the client, contained in the window size field)

TCP Connection Establishment (1)

* Step 2: SYN + ACK — After receiving the request segment
— Server responds to the client by sending the reply segment.
— It informs the client of the parameters at the server side.

* Reply segment contains the following information in TCP header:
— 1. Initial sequence number (randomly chosen by the server)

— 2. SYN bit set to 1. (to indicate the client that this segment contains the initial
sequence number used by the server)

— 3. Maximum segment size (the largest data chunk that server can send and receive
from the client, contained in the Options field)

— 4. Recetving window size (the limit of unacknowledged data that can be sent to the
server, contained in the window size field)

— 5. Acknowledgement number (the initial sequence number in the request segment
sent by the client incremented by 1 as an acknowledgement number, or it indicates
the sequence number of the next data byte that server expects to receive from the
client)

— 6. ACK bit set to 1. (to indicate the client that the acknowledgment number field in
the current segment 1s valid)

TCP Connection Establishment (I1I)

* Step 3: ACK — After receiving the reply segment
— Client acknowledges the response of server.

— It acknowledges the server by sending a pure acknowledgement.

* Not necessary.

TCP Connection Establishment: Important Points (I)

* Connection establishment phase consume 1 sequence number of
both sides.
— Request segment consumes 1 sequence number of the requester.
— Reply segment consumes 1 sequence number of the responder.

— Pure acknowledgement do not consume any sequence number (in Step 3
ACK).

* Pure acknowledgement for the reply segment 1s not necessary.
This 1s because

— If client sends the data packet immediately, then 1t will be considered as
an acknowledgement.

— It means that in the first two steps only, the full duplex connection is
established.

TCP Connection Establishment: Important Points (II)

* For all the segments except the request segment, ACK bit 1s
always set to 1. This 1s because

— For the request segment, acknowledgement number field will always be
invalid.

— For all other segments, acknowledgement number field will always be
valid.

* (Certain parameters are negotiated during connection
establishment. The negotiation can be on setting the values of
the following parameters

— 1. Window size
— 2. Maximum segment size
— 3. Timer values

TCP Connection Establishment: Important Points (III)

* In any normal TCP segment,

— If SYN bit = 1 and ACK bit = 0, then it must be the request
segment.

— If SYN bit = 1 and ACK bit = 1, then 1t must be the reply segment.

— If SYN bit = 0 and ACK bit = 1, then it can be the pure ACK or
segment meant for data transfer.

— If SYN bit = 0 and ACK bit = 0, then this combination is not
possible.

The 1Pv4 Datagram

The header has a 20-byte fixed part and a variable-length optional part.

The bits are transmitted from left to right and top to bottom. This 1s
“big-endian” network byte order.

- 32 Bits -
T T S T T S T S M S R A T T S S T S S EN S SO SO S S N
Version IHL Differentiated services Total length
|dentification [F) hlil Fragment offset
Time to live Protocol Header checksum

Source address

Destination address

(
))

- Options (0 or more words)

Figure 5-46. The IPv4 (Internet Protocol) header.,

The TCP Segment Header

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP C|E|UIAIP|R|S|F
header WICIR|C|S|S|Y|I Window size
length RIE|G|K|H|[T|N|N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Figure 6-36. The TCP header.

A TCP-SYN Example

A *WLAN - X

MR GREEE) WEV) BEEG) EBRKO oA FIHS) BIEY) TEW) IEM HEEH)

AW ge R QesEF LS = aQQE

([Teep B o)+

No. Time Source Destination Protocal Length Info ~
92 5.114470 10.162.54.132 183.246.191.148 TCP 54 51449 -» 80 [ACK] Seq=853 Ack=9039 Win=510 Len=0

109 5.3469@9 120.253.255.98
116 5.347017 120.253.255.98

> Ethernet II, Src: IntelCor_de:dd:de (34:2e:b7:de:dd:de), Dst: NewH3CTe b9:e8:02 (74:32:20:b9:e8:02) ~
> Internet Protocol Version 4, Src: 10.162.54.132, Dst: 120,253.255.98
~ Transmission Control Protocol, Src Port: 51460, Dst Port: 443, Seq: O, Len: 0

Source Port: 51460

Destination Port: 443

[Stream index: 8]

[TCP Segment Len: 0]

10.162.54.132
10.162.54.132

TCP
TLSv1.3

54 51460 -» 443 [ACK] Seq=1 Ack=1 Win=131328 Len=@
571 Client Hello v

Sequence Number: @

Sequence Number (raw):

(relative sequence number)
2287064463

[Next Sequence Number:
Acknowledgment Number:

Acknowledgment number

1 (relative sequence number)]
]
(raw): @

1000 = Header Length: 32 bytes (8)
>
Flags: @xee2 (SYN)
Window: 642486
[Calculated window size: 64249]
Checksum: @xb9ac [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
> Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation (NOP), No-Operation (NOP), SACK permitted
> [Timestamps] v

©ope 74 3a 20 b9 e8 02 34 2e b7 de dd de @8 00 45 @0 t: -4, .- E
0010 00 34 bd c5 40 00 80 06 0O 00 Ga a2 36 84 78 fd 4@ -+ 6%
0020 ff 62 c9 04 01 bb 88 51 d5 8f 00 00 0@ 00 F{ZNF b----- Q ------ .
0030 fa f@ b9 ac 00 9@ 92 94 05 b4 01 83 03 B8 O1 L v v e e
0046 84 e2

@ 7 Flags (12 bits) (tcp. flags), 2 byte(s)

POREY N iari

|| sr4: 12761 « DR 12435 (97.4%)

[| AEE: Default
[

18:31

= 2021/11/16

HER R EIE T ~Seq no. N: 2287064463, X/ ~segment Sk TIN32AY, ANETCPLEBIE & 120
AT, PEWAE Optiond& 10, 36 5 124575,

A TCP-SYN-ACK Example

A *WLAN - X
MHHF) HREE(E) ME(V) BEEG) BERO o) #®IHS) EBIEY) FERw) IR #EH)
made TRE Qe EF L= QQE
([tep -]+
No. Time Source Destination Protocal Length Info o
92 5.114470 10.162.54.132 183.246.191.148 TCP 54 51449 -» 80 [ACK] Seq=853 Ack=9039 Win=510 Len=0

109 5.3469€9 10.162.54.132 120.253.255.98 TCP 54 51460 -» 443 [ACK] Seq=1 Ack=1 Win=131328 Len=0
110 5.347017 10.162.54.132 120.253.255.98 TLSv1.3 571 Client Hello v
> Ethernet II, Src: NewH3CTe_b9:e8:02 (74:3a:20:b9:e8:02), Dst: IntelCor _de:dd:de (34:2e:b7:de:dd:de) ~

> Internet Protocol Version 4, Src: 120,253.255,98, Dst: 10.162.54.132
~ Transmission Control Protocol, Src Port: 443, Dst Port: 51460, Seq: ©, Ack: 1, Len: ©
Source Port: 443
Destination Port: 51460
[Stream index: 8]
[TCP Segment Len: @]
Sequence Number: @ (relative sequence number)
Sequence Number (raw): 3433525230
[Next Sequence Number: 1 (relative sequence number)]
Acknowledgment Number: 1 (relative ack number)
Acknowledgment number (raw): 2287064464
1000 = Header Length: 32 bytes (8)
>
Flags: @xe12 (SYN, ACK)
Window: 65535
[Calculated window size: 65535]
Checksum: 6x5042 [unverified]
[Checksum Status: Unverified]
Urgent Pointer: @
> Options: (12 bytes), Maximum segment size, No-Operation (NOP), No-Operation (NOP), SACK permitted, No-Operation (NOP), Window scale
> [SEQ/ACK analysis] v
0008 34 2e b7 de dd de 74 3a 20 b9 e8 02 08 @00 45 b8 4. -t: .- E-
0010 @9 34 d9 b6 00 0@ 75 @6 bl cf 78 fd ff 62 Ba a2 -4 ----u- --X--b--
0020 36 84 @1 bb c9 @4 cc a7 6 ee 88 51 d5 90 [EEEEEE o--Q--
0030 ff ff 50 42 00 0@ 02 04 05 b4 01 01 04 02 01 B3 - PBrr++ srercrns
0046 @3 es ..

@ ¥ Flags (12 bits) (tep. flags), 2 byte(s) || s#: 13511 « D8R 13131 (97.2%) [| M Default
. : = z 18:36
E PORE alis Nz i i , : " P E pmpe

HEEEE: X HEACK no (2287064464) WILFFITHISYN segmentH Sequence no + 1. £ i3
F£I¥)Seq no. 3433525230, AlkikimffSeq no i H R R R !

“SYN Flood” Attack

* Avulnerability with implementing the three-way handshake is that the
listening process must remember its sequence number as soon it responds

with its own SYN segment.

The clock-based ISN proved to have a significant weakness:

A SYN flood — A malicious sender can tie up resources on a host by sending a
stream of SYN segments and never following through to complete the connection. It
crippled many Web servers in the 1990s.

One way to defend against this attack 1s to use SYN cookies. Instead of
remembering the sequence number, a host chooses a cryptographically generated
sequence number, puts it on the outgoing segment, and forgets it. If the three-way
handshake completes, this sequence number (+ 1) will be returned to the host. It can
then regenerate the correct sequence number by running the same cryptographic
function, as long as the inputs to that function are known, for example, the other
host’s IP address and port, and a local secret.

* ISN = C(t) + hash(local addr, local port, remote addr, remote port, key) (Initial Sequence
Number)

RFC1948

The Two-army Problem

* Symmetric release treats the connection as two separate
unidirectional connections and requires each one to be

released separately.
* The two-army problem

Blue
B army B
#1

I White army Al
=

Figure 6-13. The two-army problem.

TCP Connection Release

 Each simplex connection is @ ‘ - > ==
released independently. &7 B
« Normally, four TCP segments are =2 N FSTABLISED
needed to release a connection: ~ |------- Seq: 5000 [— = — =~ — >
one FIN and one ACK for each ACK ’___,f——”"
direction. FlN_VLU [' cms:_wm
 To avoid the two-army problem T
(discussed 1n Sec.6.2.3), timers ‘ -
are used. v ~FN_ T)
Seq: 7001
— Ifaresponse to a FIN is not AL L aoesonn ik
forthcoming with two maximum gl ACK
packet lifetimes, the sender of the @ |-——--—1 bkl SEEEE >
FIN releases the connection. The ! J
other side will eventually notice that TIME_WAIT CLOSED

nobody seems to be listening to it

anymore and will time out as well. -
CLOSED

TCP Connection Release (I)

 (Consider there 1s a well-established TCP connection
between the client and server. Client wants to terminate the
connection

* The following steps are followed 1n terminating the
connection:

— Step 1: For terminating the connection
* Client sends a FIN segment to the server with FIN bit set to 1.
* Client enters the FIN WAIT 1 state.
 Client waits for an acknowledgement from the server.

— Step 2: after receiving the FIN segment
* Server frees up its buffers (receiving buffer)

» Server sends an acknowledgement to the client.
» Server enters the CLOSE WAIT state.

TCP Connection Release (11)

* The following steps are followed in terminating the connection:

— Step 3: After receiving the acknowledgement, client enters the
FIN WAIT 2 state. Now,

* The connection from client to server is terminated i.e. one way connection is
closed.

* Client cannot send any data to the server since server has released its buffers.
* Pure acknowledgements can still be sent from client to server (no data).

* The connection from server to client is still open 1.e. one way connection is still
open.

* Server can send both data and acknowledgements to the client.
— Step 4: Now suppose server wants to close the connection with the client.
For terminating the connection,
» Server sends a FIN segment to the client with FIN bit set to 1.

» Server waits for an acknowledgement from the client.

TCP Connection Release (111)

* The following steps are followed 1n terminating the
connection:

— Step 5: After receiving the FIN segment,
 Client frees up its buffers (receiving buffer).

 Client sends an acknowledgement to the server (not mandatory).
e Client enters the TIME WAIT state.

« TIME WAIT state

— The TIME WAIT state allows the client to resend the final
acknowledgement if it gets lost.

— After the wait, the connection gets formally closed.

TCP Connection Management Modeling

State Description
CLOSED No connection is active or pending
LISTEN The server is waiting for an incoming call
SYN RCVD A connection request has arrived; wait for ACK
SYN SENT The application has started to open a connection
ESTABLISHED | The normal data transfer state
FIN WAIT 1 The application has said it is finished
FIN WAIT 2 The other side has agreed to release
TIME WAIT Walit for all packets to die off
CLOSING Both sides have tried to close simultaneously
CLOSE WAIT The other side has initiated a release
LAST ACK Wait for all packets to die off

Figure 6-38. The states used in the TCP connection management finite state machine.

(Step 2 ';’ of the 3-way handshake)

-

'

SYN
RCVD

LISTEN/-
SYN/SYN + ACK

RST/—-

(Start)

CLOSED

~

A

'

LISTEN

AN

CLOSE/~

CLOSE/-

SEND/SYN

\

= SYN

CLOSE/FIN

m——————

SYN/SYN + ACK

CLOSE/FIN

(Data transfer state)

ESTABLISHED

(simultaneous open)

SYN + ACK/ACK ~_/

SENT

Ji

(Active close)

|

|

|

|

| FIN -
CLOSING

i WAIT 1

|

| ACK- ACK/~

|

I FIN + ACK/ACK y

! FIN TIME

|

i WAIT 2 TR WAIT

|

-
CLOSED

(Timeout/)

(Go back to start)

(Step 3 of the 3-way handshake)

FIN/ACK

(FIN/ACK

-

(Passiveiclose)

Y
CLOSE
WAIT

1
i CLOSE/FIN

-

LAST
ACK

L

Figure 6-39. TCP connection management finite state machine. The heavy
solid line is the normal path for a client. The heavy dashed line is the normal

path for a server. The light lines are unusual events. Each transition is labeled

with the event causing it and the action resulting from it, separated by a slash.

___________ | |

CONNECT/SYN (Step 1 of the 3-way handshake)

Each line is marked by
an event/action pair

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP

— TCP
* TCP segment header

* TCP connection establish

* TCP sliding window

* TCP timer management

* TCP congestion control

* QUIC

* BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Sliding Window

Sender Receiver Receiver's
Application buffer
dogs a2-KB — 0 4 KB
write
Empty
2 KB _ b
ACK = 204845 T
- S iy 2 -
- AN 7
Application . .
does a 2-KB — (It indicates the
write _
2KB] SEQ =204 sequence number
Full
of the next data
Sender is) Application byte that receiver
blocked ds 2 KB .
ocKe reads expects to receive
from the sender)
2 KB
Sender may
send up to 2-KB —=
1 KB] gz
Q= 4035 1KB| |2KB

Figure 6-40. Window management in TCP.

A connection for data transmission
example (I)
B

A
SYN In the following table, relative
\—;E;;?“* sequence numbers are used, which
-«

T ———aa is to say that sequence numbers

~—_ﬂﬁc_\‘* begin with 0 on each side. The SEQ
« 25— numbers on the A side correspond

= to the ACK numbers on the B side;
o they both count data flowing from

“foobar”
_‘\E”-“» A to B.
‘_______’_____Q———-——‘

\‘@@EXE*
N

AC

«—
\K»

1
2
3
4
5
6
7
8
9

10
11
12
13
14

An Ladder Example (1I)
| Asends Bsends

SYN: SEQ =0

ACK: SEQ =1, ACK=1 (ACK of SYN)
“abc”: SEQ =1, ACK =1

“dfeg”: SEQ = 4, ACK = 1

“foobar”: SEQ =8, ACK=1

“goodbye”: SEQ =14, ACK=6

FIN: SEQ =21, ACK=6

ACK of FIN: SEQ = 22, ACK =7

SYN+ACK: SEQ = 0, ACK = 1 (expecting)

ACK of “abc”: SEQ =1, ACK =4 (no data)

ACK of “dfeg”: SEQ =1, ACK = 8 (no data)

“hello”: SEQ =1, ACK = 14

ACK of “goodbye”: SEQ = 6, ACK = 21

ACK of FIN: SEQ = 6, ACK = 22
FIN: SEQ = 6, ACK = 22

Another Example

* Suppose A and B create a TCP connection with ISN, = 20,000 and ISNg = 5,000. A sends
three 1000-byte packets (Datal, Data2, and Data 3 below), and B ACKs each. Then B sends a
1000-byte packet DataB to A and terminates the connection with a FIN. In the table below,
fill in the SEQ and ACK fields for each packet shown.

S henes T Tosenas

1 SYN: ISN, = 20000

2 SYN+ACK: ISN, = 5000, ACK =

3 ACK: SEQ= , ACK =

4 Datal: SEQ = , ACK =

5 ACK: SEQ = , ACK = (no data)
6 Data2: SEQ = , ACK =

7 ACK: SEQ = , ACK = (no data)
8 Data3: SEQ = , ACK =

9 ACK: SEQ = , ACK = (no data)
10 DataB: SEQ = , ACK =

11 ACK: SEQ = , ACK =

12 FIN: SEQ = , ACK =

TCP Sliding Window

* TCP implements sliding windows, in order to improve
throughput.

* Window sizes are measured in terms of bytes rather
than packets;

* When the window 1s 0, the sender may not normally
send segments, with two exceptions.

— 1) Urgent data may be sent, for example, to allow the user to
kill the process running on the remote machine.

— 2) The sender may send a 1-byte segment to force the receiver
to re-announce the next byte expected and the window size.
This packet is called a window probe.

* The TCP standard explicitly provides this option to prevent deadlock
if a window update ever gets lost.

Nagle’s Algorithm

* To reduce the load placed on the network by the receiver

— Delayed acknowledgements is to delay acknowledgements and window
updates for up to 500 msec in the hope of acquiring some data on which
to hitch a free ride.

* To reduce the bandwidth used by a sender that sends multiple short
packets.

— Nagle’s algorithm (Nagle, 1984): when data come into the sender in
small pieces, just send the first piece and buffer all the rest until the first
piece 1s acknowledged. Then send all the buffered data in one TCP
segment and start buffering again until the next segment is
acknowledged. (= burstness)

— Nagle’s algorithm 1s not suitable for interactive games. A subtle problem

is that Nagle’s algorithm can sometimes interact with delayed
acknowledgements to cause a temporary deadlock.

* The receiver waits for data on which to piggyback an acknowledgement, and
the sender waits on the acknowledgement to send more data.

Clark’s Solution

* Another problem that can degrade TCP performance is the silly
window syndrome (Clark 1982).

— The problem occurs when data are passed to the sending TCP entity in large
blocks, but an interactive application on the receiving side reads data only 1 byte

at a time.
— Clark’s solution is to force the receiver to wait until it has a decent amount of
space available and advertise that instead. e ~

i
‘ Receiver's buffer is full

Application reads 1 byte

‘ |-— Room for one more byte ‘

Window update segment sent
. = New byte arrives
1 Byte

Receiver's buffer is full

N _/

The Silly Window Syndrome

* Nagle’s algorithm and Clark’s solution to the silly window
syndrome are complementary.

— Nagle was trying to solve the problem caused by the sending
application delivering data to TCP a byte at time.

— Clark was trying to solve the problem of the receiving application
sucking the data up from TCP a byte at a time.

— Both solutions are valid and can work together. The goal is for the
sender not to send small segments and the receiver not to ask for
them.

TCP Sliding Window

* Another 1ssue that the receiver must handle is that segments
may arrive out of order.

— The recerver will buffer the data until it can be passed up to the
application 1n order.

— Acknowledgements can be sent only when all the data up to byte
acknowledged have been received.

* This 1is called a cumulative acknowledgement.

* Example: If the receiver gets segments 0, 1, 2,4, 5, 6, and 7, it can
acknowledge everything up to and including the last byte in segment
2. When the sender times out, it then retransmits segment 3. As the
receiver has buffered segments 4 through 7, upon receipt of segment
3 it can acknowledge all bytes up the end of segment 7.

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP

— TCP
* TCP segment header

* TCP connection establish

* TCP sliding window

* TCP timer management

* TCP congestion control

* BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Timer Management

* TCP uses multiple timers (at least conceptually) to do 1ts
work.

— The RTO (Retransmission TimeOut)

* How long should the RTO be ? This problem 1s much more difficult in the
transport layer than in data link protocols such as 802.11.

— The Persistence timer

— The Keepalive timer
— The one used in TIME WAIT state

TCP Timer Management: RTO

* The RTO (Retransmission TimeOut)

— How long should RTO be? This problem 1s much more difficult in
the transport layer than in data link protocols such as 802.11.

— In the data link layer, the expected delay 1s measured 1n
microseconds and 1s highly predictable (i.e., has a low variance)

03— T 0.3 T, T,
| | |
| | |

(\ | | |

02 | 0.2 | |

= | = : :
. | = | |
o | o | |
o | e | |
o | [a | |

0.1 | 0.1 | |

J L‘I | |
| _/\ |
| | |
0 | | | | | 0 | [L

0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time (microseconds) Round-trip time (milliseconds)

(a) (b)

Figure 6-42. (a) Probability density of acknowledgement arrival times in the
data link layer. (b) Probability density of acknowledgement arrival times for TCP.

TCP Timer Management: RTO

* TCP 1s faced with a radically different environment. The pdf
for the time 1t takes for a TCP acknowledgement to come
back 1s larger and more variable.

— If the timeout 1s set too short, say T1, in F1g.6-42(b), unnecessary
retransmissions will occur.

— If the timeout 1s set too long, say T2, in Fig.6-42(b), performance
will suffer due to the long retransmission delay whenever a packet
1s lost.

— Furthermore, the mean and variance of the acknowledgement
arrival distribution can change rapidly within a few seconds as
congestion builds up or 1s resolved.

TCP Timer Management: RTO

The solution 1s to use a dynamic algorithm that constantly adapts
the timeout interval, based on continuous measurements of
network performance.

SRTT (Smoothed Round-Trip Time, Jacobson,1988)

— Exponentially Weighted Moving Average (EWMA, R is the current
estimate of the RTT)

SRTT = o SRTT + (1 —a) R where a. = 7/8.
RTTVAR (Round-Trip Time VARIiration)

— To make the timeout value sensitive to the variance in round-trip times as
well as the smoothed round-trip time.

RTTVAR =3 RTTVAR + (1 — B) |[SRTT- R| where 3 = 3/4.
RTO = SRTT + 4 x RTTVAR
RTO = min(1sec, RTO)

RFC 2988

TCP Timer Management: RTO

* One problem that occurs with gathering the samples, R, of
the round-trip time 1s what to do when a segment times out
and 1s sent again. When the acknowledgement comes 1n, it
1s unclear whether the acknowledgement refers to the first
transmission or a later one.

* Karn’s algorithm: do not update estimates on any
segments that have been retransmitted. Additionally, the
timeout 1s doubled on each successive retransmission until
the segments get through the first time.

TCP Timer Management: the persistent
timer

It is designed to prevent the following deadlock.

— The receiver sends an acknowledgement with a window size of 0,
telling the sender to wait. Later, the receiver updates the window,
but the packet with the update 1s lost. Now the sender and the
receiver are each waiting for the other to do something.

— When the persistence timer goes off, the sender transmits a probe
to the receiver. The response to the probe gives the window size.

 If it 1s still O, the persistent timer 1s set again and the cycle repeats.

 [f it 1s nonzero, data can now be sent.

TCP Timer Management: the keepalive
timer

* When a connection has been 1dle for a long time, the
keepalive timer may go off to cause one side to check
whether the other side 1s still there.

TCP Timer Management: the TIME
WAIT timer

* This timer 1s used 1n the TIME WAIT state while closing.

* It runs for twice the maximum packet lifetime to make

sure that when a connection 1s closed, all packets created by
it have died off.

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP

— TCP
* TCP segment header

* TCP connection establish

* TCP sliding window

* TCP timer management

* TCP congestion control

* BBR (Bottleneck Bandwidth and Round-trip propagation time)

TCP Congestion Control (1)

* The network layer detects congestion when queues grow
large at routers and tries to manage 1t, if only by dropping
packets.

* Itis up to the transport layer to receive congestion
feedback from the network layer and slow down the rate of
traffic that 1t 1s sending into the network.

— In the Internet, TCP plays the main role in controlling congestion,
as well as the main role in reliable transport.

TCP Congestion Control (II)

* TCP congestion control 1s based on a AIMD (Additive
Increase Multiplicative Decrease) control law using a
window and with packet loss as the binary signal.

* TCP maintains a congestion window (the sending window)
and a flow control window (the receiving window)
— The congestion window (the sending window) whose size 1s the
number of bytes the sender may have in the network at any time.

* The Congestion window is known only to the sender and is not sent over the
links.

— The corresponding rate 1s the window size divided by the round-
trip time of the connection.

— TCP adjusts the size of the congestion window according to the
AIMD rule.

TCP Congestion Control (11I)

* TCP congestion control 1s based on a AIMD (Additive
Increase Multiplicative Decrease) control law using a
window and with packet loss as the binary signal.

* TCP maintains a congestion window and a flow control
window

— The flow control window (or the receiver window size) which
specifies the number of bytes that the receiver can buffer. Receiver
dictates its window size to the sender through TCP Header.

— Both windows are tracked 1n parallel, and the number of bytes that
may be sent 1s the smaller of the two windows. In other words, the
amount of unacknowledged data at a sender < min (Receiver
Window Size, Congestion Window Size)

— TCP will stop sending data if either the congestion or the flow
control window 1s temporarily full.

The TCP Segment Header

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP C|E|UIAIP|R|S|F
header WICIR|C|S|S|Y|I Window size
length RIE|G|K|H|[T|N|N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Figure 6-36. The TCP header.

TCP Congestion Control (I1V)

* TCP congestion control 1s based on a AIMD (Additive
Increase Multiplicative Decrease) control law using a
window and with packet loss as the binary signal.

* All the Internet TCP algorithms assume that lost packets
are caused by congestion and monitor timeouts.

* But, using packet loss as a congestion signal depends on
transmission errors being relatively rare.

— This 1s not normally the case for wireless links such as 802.11

* Retransmission mechanism at the link layer

— Most wires and optical fibers have lower bit-error rates.

TCP Congestion Control (V)

* During the implementation, we have two important
questions:

— 1) The transmission rate of packets which the sender will use
* Ack clock ~ to estimate RTT

— 2) The size of the congestion window so that we can take the most
advantage of the network path while at the same time will not
induce clog quickly

e Slow start

TCP Congestion Control (VI)

* The key observation 1s that the acknowledgements return to the
sender at about the rate that packets can be sent over the slowest
link 1n the path. This 1s precisely the rate that the sender wants to

use.
— The acknowledgements reflect the times at which the packets arrived at
the receiver after crossing the slow link.
* This timing is known as an ack clock. It 1s an essential part of TCP.
— By using an ack clock, TCP smooths out traffic and avoids unnecessary
queues at routers.

1: Burst of packets 2: Burst queues at router
sent on fast link Fast link B and drains onto slow link Slow link
g DD (= | Y S (bottleneck) g
boed -
Sender ‘\ N N < N Receiver
4: Acks preserve slow 3: Receive acks packets
link timing at sender Ack clock at slow link rate

Figure 6-43. A burst of packets from a sender and the returning ack clock.

TCP Start Problem

* We want to quickly near the right rate, cwnd, ., , but it
varies greatly because TCP needs to work across a very
large range of data rates and RTTs.

— Fixed sliding window doesn’t adapt and 1s rough on the network
layer (packet loss!)

— Al (Additive Increase) with small bursts adapts cwnd gently to the
network, but might take a long time to become efficient.

Slow-Start Solution (I)

» Start by doubling cwnd (the congestion window) every RTT
— Exponential growth (1, 2, 4, 8, 16, ...)

— Start slow quickly reach large values.

Window (cwnd)
P
fixed The Optimal size
T s of the congestion
window

Slow-start

Al(Additive Increase)

LY
4

Time

Slow-Start (Doubling) Timeline

TCP sender TCP receiver

cwnd = 1
Acknowledgement——_|

cwnd =

cwnd = 4

cwnd =5

cwnd =6 =
cwnd =7 oS E==T T
cwnd=8 =~ S— ™

Increment cwnd by 1
packet for each ACK.

Figure 6-44. Slow start from an initial congestion window of one segment.

BECE]—AACK, I — e, Wt — 1w,

Data

1 RTT, 1 packet

1 RTT, 2 packets

1 RTT, 4 packets

1 RTT, 4 packets
(pipe is full)

Slow-Start Solution (II)

* Because slow start causes exponential growth, eventually 1t will
send too many packets into the network too quickly.

* To keep slow start under control, the sender keeps a threshold for
the connection called the slow start threshold.

— Initially the slow start threshold is set arbitrarily high, to the size of
the flow control window, so that it will not limit the connection.
— TCP keeps increasing the congestion window 1n slow start until

* 1) A timeout occurs (~packet loss): the slow start threshold 1s set to
be half of the congestion window and the entire process is restarted.

* 2) The congestion window exceeds the slow start threshold: TCP
switches from slow start to additive increase.

— In this mode, the congestion window is increased by one segment every
round-trip time.

Additive Increase Timeline

TCP sender TCP receiver
cwnd = 1 '/.f——— Data
Acknc}wledgement———____\\ q
cwnd = 7_-\ } 1 RTT, 1 packet

1 RTT, 2 packets

1 RTT, 3 packets

Increment cwnd - ——. ¢ 1 RTT, 4 packets

by I packet every | cwnd=5
cwnd ACKSs (or 1
RTT)

1 RTT, 4 packets
{ (pipe is full)

e e — *—v—‘l ——

Figure 6- 41 Additive increase from an initial congestion window of one segment.
ML BIBSE R AN SERERTT, A S — SR, rownd = 3, FUAHCE = ACKs, 7
iﬁn—ﬁiﬁz%}%@o

Slow-Start Solution (III)

* A mix of linear and the multiplication increase (Van Jacobson, 1988)

* The whole 1dea 1s for a TCP connection to spend a lot of time with its congestion
window close to the optimum value — not so small that throughput will be low,
and not so large that congestion will occur.

Wimmdow (cwnd)

S

ewnde bp—-————— - —

CWNd}geq]
Slow- Al Phase

gsthresh - — — — — — — = — o — —

Al(Additive Increase)

Inferring Loss from ACKSs

e TCP uses a cumulative ACK

— Carries highest in-order sequence number
— Normally a steady advance

* Duplicate ACKnowledgements gives us hints about what data
hasn’t arrived
— Tell us some new data did arrive, but 1t was not next expected segment.
— Thus, the next expected segment may be lost.
— Arbitrarily treat three duplicate acknowledgements as a loss

— Retransmit next expected segment before the retransmission timeout
(Fast Retransmission)

— The slow start threshold 1s still set to be half of the current congestion
window. Slow start can be restarted by setting the congestion window to
one packet.

Fast Retransmission

Treat three duplicate Acknowledgments as a loss
— Retransmit next expected segment

— Some repetition allows for reordering, but still detects loss quickly.

It can repair single segment loss quickly, typically before a
timeout

However, we have quiet time at the sender/receiver while
waiting for the ACK to jump

The slow start threshold 1s still set of be half of the current
congestion window. Slow start can be restarted by setting
the congestion window to one packet.

TCP Congestion Control: Tahoe (1988)

The maximum segment size 1s 1KB.
Initially, the congestion window was 64 KB.

A timeout occurred at “0” clock, so the slow-start threshold is set to be half
of the congestion window, 32 KB, and the congestion window to 1KB for
transmission 0.

The congestion window grows exponentially until it hits the slow-start
threshold (32KB). Now the window grows linearly. It is increased by one
segment every RTT. ; Slow start _ -+ Additive

40 - A -7 increase
!

351 !

Threshold 32KB /_o——" Packet
30— loss
25
20 - Threshold 20KB _ ~_o——"
15

10

Congestion window (KB or packets)

| | | | [I I [| [[
0 2 4 6 8 10 12 14 16 18 20 22 24

Transmission round (RTTs)

Figure 6-46. Slow start followed by additive increase in TCP Tahoe.

TCP Congestion Control: Tahoe (1988)

* The transmission in round the “13” clock, one of packets is lost in the
network. This 1s detected when three duplicate acknowledgements
arrive. At that time, the lost packet 1s retransmitted, the slow-start
threshold is set to half of the current congestion window (40/2 = 20
KB), and slow start 1s initiated all over again.

A Slow start _ » Additive

40 A - increase
|

35" Threshold 32KB /
________________ Packet
loss

Threshold 20KB

Congestion window (KB or packets)
[y
o

0 2 4 6 8 10 12 14 16 18 20 22 24
Transmission round (RTTs)

Figure 6-46. Slow start followed by additive increase in TCP Tahoe.

Inferring Non-loss from ACKSs

* At the time of the fast retransmission, duplicate
Acknowledgements also give us hints about what data has
arrived.

— Every time another duplicate acknowledgement arrives, it 1s likely
that another packet has left the network.

— It will be the segments after the loss.

— Thus, advancing the sliding window will not increase the number
of segments stored in the network

Fast Recovery

* Fast recovery 1s the heuristic that implements this behavior.

— Continue to send a new packet for each additional duplicate
acknowledgement (pretend further duplicate ACKs are the
expected ACKs)

— To do this, duplicate ACKSs are counted (including the three that
triggered fast retransmission) until the number of packets in the
network has fallen to the new threshold.

— Reconcile views when the ACK jumps

=
Da

Data11
Data[12]
Data[13]

Bﬂtﬂ 14}
atalls

Data[16]
Data[17]
Data[18]

get ACK[9] / send Data[19]

dupACKE]

3* dupACK[S]; EFS=7; resend Data[m]l

BFS5 =13

EFS = 4 resume sending with Dataf 20]
send Data[2]]

send Data[2

send Data[23]

send Data[24)

=l kdineg il nediosees ree stabdl shed witth owned = 3
wend Daiaf29)

wend Daia]2a]

wend Dmiaf27]

!

o
i

4
) £

\
VAN

send ACK]E]

send dup ACHA]/ 11
end dupACHA]/ 12
end dup ACHEA]/ 13

send dupACHI] ! 14
b | ==nd dupackga] s 19
= | send dupACK[E]) 16
o | ool dup ACK]]) 17
e | cend dup ACE]E] 18

send ACK[20]

il | et acigzy

send ACH[232]

send ACKZ3]

TCP Renofiit 4 # Fast Recovery

i B2 N Kk i% visenderlf]
I Ta) 3, Ao 30 B 26 R
receiverPJ i [A] 5, A [R)FhAE
T A A]S 5 1]

X BB i ZE P] B [ewnd
HaE X/ A10.

v |get Datal19]; send dupACK[9) / 19

™! get Data[10]; send ACK[19

RIERILE] T =4
“Duplicated ACKs”
(dupACK[9]), #HiData[10]
A] REAEAL ik A2 H R P I
Kl ZEK T . % H&Reno TCPAR
O P g . KBrslow-start
threshold % 1] 2 /i I/ % &
P—F GFEIHZEESE
cwnd=10) , Eflslow-start
threshold N5, FfE#HT R IE
Data[10]-

it
Da

Data11
Data[12]
Data[13]
Data 14}
Daiaf15
Data[16]
Data[17]
Data[18]

get ACK[9] / send Dataf19]

dupACK[E]
dupaCKE]

37 QupACK][9];, EFS=T, resend Data[10]

EFS =48

EFS =13

EFS = & resume sending with Datal 20
send Datal21

send Datal2d

send Datal23]

send Data[24]
sliding windows resstabill shed with cwnd =3
sand Dasafzd]
zand Datafadg)
=and Datafa7]

i

!

A

X

(/

{:?

send ACH]E]

send dupACH]3]/ 11
sand dupACH]a]/ 12
send dup ACH3]/ 13
send dupACH]3]/ 14

b | s=nd dupacgE)/ 15

% | send dupaACK]) 16
vl | o] lup ACKTE] ! 17
oo | ol dUp ACKTE] /18

s=nd ACH[20]

send ACK[Z1]

send ACK[22]

send ACK[Z3]

TCP Renofiit 4 # Fast Recovery

VEEIX B ACK[9], A1
R ACKEH SH A, AL
ACK/E R AR T — Nt
P75, TmiX sk B H ACK[9] 4]
J& R ~Data[9] L& e 3], B

7 i) /2 Data[10]

. |oet Data{19]; send dupACK[d / 19

™1 get Data[10]; send ACK[19

HARFIERERXHE =14
“Duplicated ACKs” 524,
Z<HData[11], Data[12]F!
Data[13] & HIE, ANARA
ol R B K IR = A
“Duplicated ACKs” &

it
Da

Data11
Data[12]
Data[13]

Data 14}
Datall5

Data[16]
Data[17]
Data[18]

get ACK[9] / send Dataf19]

dupACK[E]
dupaCKE]

37 QupACK][9];, EFS=T, resend Data[10]

EFS =48

EFS =13

EFS = & resume sending with Datal 20
send Datal2]]
send Data[22

send Datal23]

send Data[24]

sliding windows resstabill shed with cwnd =3
zend Oatafzl]

sand Datalag]

cand Datafar]

i

/
W

.
z -
> e
.
- &
d‘ F‘ J
at Cal "
F'r F'r I.. “
- - - " -
J“ Fr‘ rr'
- " "
- L] - -
n® a -
" -t &
f‘ F.
P
- . ‘
. ‘
at ot at® - =
B
{2 " a® -
&t " "

send ACH]E]

send dupACH]3]/ 11
cand dupACHa]/ 12
send dup ACH[I]/ 13
send dupACH]3]/ 14

b | s=nd dupacgE)/ 15

% | send dupaACK]) 16
| mend dupacHpa]) 17
| mend dupaCHa]) 18

send ACH]20)]

il | et acigzy

send ACH[Z3Z]

send ACKZ3]

TCP Renofiit 4 # Fast Recovery

VEEIX B ACK[9], A1
R ACKEH SH A, AL
ACK/E R AR T — Nt
P75, TmiX sk B H ACK[9] 4]
J& R ~Data[9] L& e 3], B
7 i) /2 Data[10]

. |oet Data{19]; send dupACK[d / 19

™1 get Data[10]; send ACK[19

FEIX NI E] R, A5 AE 25
R E R : Data[14],
Data[15], Data[16], Data[17],
Data[18]f1Data[19], VLIt
f& ffiData[10], A LA Fds
PAEFS (Estimated Flight Size)
= 7. FTEUR R 1 R I%
s, Fovcakst 1
slow-start threshold (5)-

it
Da

Data11
Data[12]
Data[13]

Data 14}
Datall5

Data[16]
Data[17]
Data[18]

get ACK[9] / send Dataf19]

dupACH]
dupACKF]

3" dupACK[9]; EFS=T; resend Data[10]
EFS =8

EFS =13

EFS = 4 resume sending with Data[20] |4 .
send Data[21] |4
send Data[27] |4

send Datal23]

send Data[24]

=l iding windows resstabll shed with ownd = 3
=end Oataf23]

senid Dataf26]

wend DataaT]

| s=nd acigE)

send dup ACKIA]/ 11

b | ==nd dupackga) s 12

send dup ACHA]/ 13

L | send dupaciga) /s 14
78k, | ==nd dupACK]E] ! 19
% | send dupACKE] ! 16
i | send dupaCHgE) /17
7o | e dup T3]/ 18

send ACH]20)]

“nll, | s=nd ackgzY
| =endackgza

send ACKZ3]

TCP Renofiit 4 # Fast Recovery

VEEIX B ACK[9], A1
R ACKEH SH A, AL
ACK/E R AR T — Nt
P75, TmiX sk B H ACK[9] 4]
J& R ~Data[9] L& e 3], B
7 i) /2 Data[10]

. |oet Data{19]; send dupACK[d / 19

™1 get Data[10]; send ACK[19

YR =1 “Duplicated
ACKs” J&, F&& %5 Data[14],
Data[15]f1Data[16] .42 % 4>
fikik . HNAEEFS (Estimated
Flight Size) % T £ /bW ? /&
ANREEET4, Hi/ZData[17],
Data[18]#1Data[19], ZMINEY
[H] .9 & i%Data[10], it
AN E PR AL . TMslow-start
threshold N5, FTULAI LA
— /M ¥E B Data[20].

it
Da

Data11
Data[12]
Data[13]

Data 14}
Datall5

Data[16]
Data[17]
Data[18]

get ACK[9] / send Dataf19]

dupACH]
dupACKF]

3" dupACK[9]; EFS=T; resend Data[10]
EFS =8

EFS =13

EFS = 4 resume sending with Data[20 4 ‘ -

send Datal2]
send DatalZ2]

send Datal23]

send Data[24]
sliding windows resstabill shed with cwnd =3
sand Dasafzd]
zand Datafadg)
=and Datafa7]

| s=nd acigE)

send dupACH[I]/ 11

b | ==nd dupackga) s 12

send dupACHI]/ 13

L | send dupaciga) /s 14
o | ==nd dupackga] 19
L | send dupacKe] 1 16
i | send dupaCHgE) /17
7o | e dup T3]/ 18

s=nd ACH[20]

il | et acigzy
il | mena acigza

send ACK[Z3]

TCP Renofiit 4 # Fast Recovery

VEEIX B ACK[9], A1
R ACKEH SH A, AL
ACK/E R AR T — Nt
P75, TmiX sk B H ACK[9] 4]
J& R ~Data[9] L& e 3], B
7 i) /2 Data[10]

. |oet Data{19]; send dupACK[d / 19

™1 get Data[10]; send ACK[19

i e B — 14
“Duplicated ACK” , Fi K
E—NEEIER, 52
Data[10]#%iA, ACKBkELF]
IEH s . AZIEIETCP

ACK+Zcumulative ACK.

TCP Congestion Control: Reno

* TCP Reno (1990):

— Fast recovery: to maintain the ack clock running with a congestion
window that is the new threshold, or half the value of the congestion
window at the time of the fast retransmission.

— To do this, duplicate acknowledgements are counted until the number of
packets in the network has fallen to the new threshold.

— From then on, a new packet can be sent for each duplicate
acknowledgement that is received.

— One RTT after the fast re-transmission, the lost packet will have been
acknowledged. At that time, the stream of duplicate acknowledgements
will cease and fast recovery mode will be exited. The congestion
window will be set to the new slow start threshold and grows by linear
Increase.

— TCP avoids slow start, except when the connection i1s first started and
when a timeout occurs.

TCP Congestion Control

* TCP Reno with its mechanisms for adjusting the congestion control
has formed the basis for TCP congestion control for more than two
decades. (TCP Tahoe + fast recovery)

Congestion window (KB or packets)

A Slow start
— 4 L Additive

rJ Packet -~ increase
B loss
| Thresh.- ™~ Multiplicative

Fast decrease
- recovery
— Threshold — - -
Threshold ——— —

— MD of %2 no slow-start
L & N N N A AN AN (N A N A N NN NN N SN NN (N R R M R
0 4 8 12 16 20 24 28 32 36 40 44 48

Transmission round (RTTs)

TCP Congestion Control

* Two larger changes have also affected TCP implementations

— 1) SACK (Selective ACKnowledgements) lists up to three ranges of
bytes that have been received. With this information, the sender can more
directly decide which packets to retransmit and track the packets in flight
to implement the congestion window.

— With SACK, TCP can recover more easily from situations in which
multiple packets are lost at roughly the same time, since the TCP sender
knows which packets have not been received.

— [RFC2883 and RFC3517]

Retransmit 2 and 5! fLOSt packets\‘
6> 15> [[2y [

Sende <] 4 <] d
ACK: 1 ACK: 1 ACK: 1 ACK: 1
SACK:3 SACK:3-4 SACK:#6, 3-4

Figure 6-48. Selective acknowledgements.

TCP Congestion Control
* ECN (Explicit Congestion Notification)

— ECN 1s an IP layer mechanism to notify hosts of congestion.

— The use of ECN is enabled for a TCP connection when both the sender
and receiver indicate that they are capable of using ECN by setting the
ECE and CWR bits during the connection establishment.

* The TCP receiver uses the ECE (ECN-Echo) flag to signal the TCP sender to

tell it to slow down when the TCP receiver gets a congestion indication from the
network.

* The sender tells the receiver that it has heard the signal by using the CWR
(Congestion Window Reduced) flag, so that the TCP receiver knows the sender
has slowed down and can stop sending the ECN-Echo.

— If ECN is used, routers that support ECN will set a congestion signal on
packets that can carry ECN flags when congestion 1s approaching,
instead of dropping those packets after congestion has occurred.

— ECN requires both host and router support. [RFC 3168]

The TCP Segment Header

32 Bits

Source port Destination port

Sequence number

Acknowledgement number

TCP CIE|IUIAIP|R|S|F
header WICIR|C|S|S|Y|I Window size
length RIE|G|K|H|[T|N|N

Checksum Urgent pointer

Options (0 or more 32-bit words)

Data (optional)

Figure 6-36. The TCP header.

TCP Reno, NewReno, and SACK

* Reno can repair one loss per RTT

— Multiple losses cause a timeout

e NewReno further refines ACK heuristics

— Repairs multiple losses without timeout
— SACK (Selective Acknowledgement) 1s a better 1dea

* Receiver sends ACK ranges so sender can retransmit without
guess

Feedback Signals for Congestion Control

* Several possible signals, with different pros/cons

Packet loss TCP NewReno Hard to get wrong/ Hear
about congestion late

Packet delay Compound TCP (Window) Hear about congestion early/
need to infer congestion

Router indication =~ TCP with ECN (Explicit Hear about congestion early/
Congestion Notification) require router support

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP
— TCP

Outline

* Overview of the transport layer

* The internet transport protocols
— UDP

— TCP
* TCP segment header

* TCP connection establish
* TCP sliding window

* TCP timer management

* TCP congestion control

* BBR (Bottleneck Bandwidth and Round-trip propagation time)

BBR Congestion-based Congestion
Control

Slow Start [l

oH
= _'|::'___—— Oing Packat Time

;
1R '

ol
2R Fis

1 B [F
3R i P

The horizontal direction is time. The continuous time line has been chopped into one-
round-trip-time pieces stacked vertically with increasing time going down the page.
The grey, numbered boxes are packets. The white numbered boxes are the correspond-
ing acks.

As each ack arrives, two packets are generated: one for the ack (the ack says a packet

has left the system so a new packet is added to take its place) and one because an ack
oneng the conoestinn windnw hv ane nacket Tt mav he clear fram the fionre whv an

Slow Start

* As each ack arrives, two packets are generated.
— opens the window exponentially in time.
* The slow-start window increase 1sn’t that slow: it

takes time Rlog, W where R 1s the round-trip-time
and W 1s the window size 1n packets.

BBR 15!

* TCP congestion control was created in the 1980s — interpreting
packet loss as “congestion”. This equivalence was true at the time but
was because of technology limitations, not first principles.

* As NIC evolved from Mbps to Gbps and memory chips from KB to
GB, the relationship between packet loss and congestion became
more tenuous.

— When bottleneck buffers are large, loss-based congestion control keeps them full,
causing buffer bloat.

* Delaying congestion events for senders (when network devices in a long network
path have buffers that are too large, a TCP sender with a large congestion window
can send at a rate that far exceeds the capacity of the network before it ever receives
a loss signal.)

— When bottleneck buffers are small, loss-based congestion control misinterprets
loss as a signal of congestion, leading to low throughput.

BBR 15!

* Fixing these problems requires an alternative to loss-based congestion
control. First, we have to understand where and how network
congestion originates.

— Congestion and bottleneck

* At any time, a full-duplex TCP connection has exactly one slowest
link or bottleneck in each direction. The bottleneck 1s important
because

— It determines the connection’s maximum data-delivery rate.
— It 1s where persistent queues form.

* From TCP’s viewpoint, an arbitrary complex path behaves as a single
link with the same RTT and bottleneck rate.

— Two physical constraints, RTprop (round-trip propagation time) and BtIBw
(Bottleneck Bandwidth), bounds transport performance.

* If the network path were a physical pipe, RTprop would be its length
and BtIBW i1ts minimum diameter.

app limited bandwidth limited
D
A
\OQe
RTprop
Bt(Bw
KR
\\Q_ optimum loss-based
o operating congestion
K point control
N
i is here

BBR !

operates here

* Fig.1 shows RTT and delivery rate

variation with the amount of data
in flight (data sent but not yet
acknowledged).

Blue lines show the RTprop
constraint, green lines the BtIBw
constraint, and red lines the
bottleneck buffer.

— When there isn’t enough data in
flight to fill the pipe, RTprop
determines behavior; otherwise,
BtIBw dominates.

Transitions between constraints
result in three different regions
{app-limited, bandwidth-limited,
and buffer-limited}

app limited

RTprop

bandwidth limited

BtlBw

buffer
limited

optimum
operating
point
is here

loss-based
congestion
control
operates here

BBR !

Bandwidth-delay product (BDP) is
a measurement of how many bits can
fill up a network link. It gives the
maximum amount of data that can be
transmitted by the sender at a given
time before waiting for
acknowledgment. Thus, it is the
maximum amount of unacknowledged
data.

data in flight (data sent but not yet
acknowledged) = BtIBw x RTprop.
The pipe 1s full pass this point (BDP).

app limited

RTprop

BBR !

bandwidth limited

BtlBw

loss-based
congestion
control
operates here

optimum
operating
point
is here

Data in flight (data sent but not yet
acknowledged). ~ N

Little’s Result (in steady state) —

which relates the average number in the
system to the average arrival rate A and
the average time spent in that system T,
namely

N =AT

N 1is the data in flight in the network.
T (~ RTT) 1is proportional to the amount
of packets in flight N, the lower bound
is RTprop (min RTT).

A (~ the delivery rate) 1s inversely
proportional to the RTT and
proportional to the amount of packets
in flight N , the upper bound is BltBw
(max A or the delivery rate).

app limited bandwidth limited
D
A
(_}_OQQ
RTprop
g BtlBw
& N V
KR
\\Q_ optimum loss-based
o opergtlng congestion
\OQ point control
© is here operates here

BBR !

buffer
Llimited

The inflight — BDP excess creates a
queue at the bottleneck, which results in
the linear dependence of RTT on inflight
data (Little’s Law).

Packets are dropped when the excess
exceeds the buffer capacity.

Loss-based congestion control operates
at the right edge of the bandwidth-limited
region, delivering full bottleneck
bandwidth at the cost of high delay and
frequent packet loss.

BBR operates at the /eft edge of
bandwidth-limited region, maximizing
delivered bandwidth while minimizing
delay and loss

BBR 1!

* “app-limited” (application limited) region — The
application runs out of data to fill the network.

* When there 1sn’t enough data 1n flight to fill the pipe,
RTprop determines behavior; otherwise BtIBw dominants.

* RTprop and BtiIBw obey an uncertainty principle (the
Network’s Heisenberg Uncertainty Principle): whenever one
can measured, the other cannot.

— The pipe has to be overtilled to find its capacity, which creates a
queue that obscures the length of the pipe. (BtIBw but not RTprop)

— An application running a request/response protocol might never
send enough data to fill the pipe and observe BtIBW (RTprop but

not BtIBw)

BBR !

* (Characterizing the bottleneck
— Rate balance: a connection runs with the highest throughput and lowest
delay when the bottleneck packet arrival rate equals BtIBw.
* This condition guarantees that the bottleneck can run at 100% utilization.
— Full pipe: the total data in flight is equal to the BDP = BtIBw x RTprop.

 This condition guarantees there is enough data to prevent bottleneck starvation
but not over fill the pipe.

— BtIBw and RTprop vary over the life of a connection, so they must be
continuously estimated.

— BtIBw and RTprop are completely independent

* RTprop can change (for example, on a route change) but still have the
same bottleneck, or BtIBw can change (for example, when a wireless
link changes rate) without the path changing.

BBR !

* How to estimate RTprop?

— TCP currently tracks RTT (the time interval from sending a data
packet until 1t is acknowledged) since it 1s required for loss
detection.

— Atany time t, RTT, = R1prop, +1, , where n > 0 represents the
“noise” introduced by queues along the path, the receiver’s delay
ack strategy, ack aggregation, etc.

* RTprop is a physical property of the connection’s path and changes only
when the path changes (Y32 4% B BE a8 B 1 B /N ZE, M RTTA2 SLME).

— An unbiased, efficient estimator at time T 1s

ﬁpmp =RTpr0p+min(77t) :min(RTZ) Vit e [T—WR,T]

* A running min over time window Wy which is typically tens of seconds to
minutes.

BBR !

e How to estimate BtIBw?

— Unlike RTT, nothing in the TCP requires implementations to track
bottleneck bandwidth, but a good estimate results from tracking delivery
rate.

— Average delivery rate between send and ack i1s the ratio of data delivery
to time elapsed: deliveryRate = Adelivered / At.

— This rate must be < the bottleneck rate, the arrival amount 1s known
exactly so all the uncertainty 1s in the Az, which must be > the true arrival
interval; thus, the ratio must be < the true delivery rate, which is, in turn,
upper-bounded by the bottleneck capacity). (BtIBwe ¥ HE # fie 1k £
IR, A LS .)

— A windowed-max of delivery rate is an efficient, unbiased estimator of
BltBw:

BItBW = max (deliveryRate,) Nte|T—W,,T]

* where the time window Wy, 1s typically six to ten RTTs.

BBR 3!

* The core BBR algorithm has two parts:

— 1. When an ack is received

function onAck(packet)
rtt = now - packet.sendtime
update_min_filter(RTpropFilter, rtt)
delivered += packet.size
delivered time = now
deliveryRate = (delivered - packet.delivered)
/(now - packet.delivered time)
if (deliveryRate > BtlBwFilter.currentMax
|| ! packet.app_limited)
update_max_filter(Bt1BwFilter,
deliveryRate)
if (app_limited until > 0)
app_limited until - = packet.size

The if checks address the
uncertainty issue:

Ly

2)

BtIBw 1s a hard upper
bound on the delivery
rate so a measured
delivery rate larger
than the current BltBw
estimate must mean
the estimate is too low.
The code here decides
which samples to
include in the
bandwidth model so it
reflects network, not
application limits.

BBR !

* The core BBR algorithm
has two parts:

— 2. When data is sent: to
match the packet-arrival
rate to the bottleneck link’s
departure rate, BBR paces
every data packet.

* pacing rate: BBR’s
primary control parameter,
to lower the burstiness.

* cwnd_gain: bounds inflight
to a small multiple of the
BDP to handle common
network and receiver
pathologies.

function send(packet)

bdp = BtlBwFilter.currentMax
* RTpropFilter.currentMin
if (inflight >= cwnd_gain * bdp)
// wait for ack or timeout
return
if (now >= nextSendTime)
packet = nextPacketToSend()
if (! packet)
app_limited_until = inflight
return
packet.app_ limited =
(app_limited until > 0)
packet.sendtime = now
packet.delivered = delivered

packet.delivered time = delivered time
ship(packet)
nextSendTime = now + packet.size /
(pacing_gain *
BtlBwFilter.currentMax)
timerCallbackAt(send, nextSendTime)

BBR !

* Rather than using events such as loss or buffer occupancy,
which are only weakly correlated with congestion, BBR
starts from Kleinrock’s formal model of congestion and 1ts
associated optimal operating point.

* The rate and amount BBR sends 1s solely a function of the
estimated BtIBw and RTprop.
— BtIBw and RTprop can be estimated sequentially

* BBR runs purely on the sender and does not require changes

to the protocol, recelver, or network, making it
incrementally deployable.

References

* [1] Jacobson, V. Congestion avoidance and control. ACM SIGCOMM
Computer Communication Review, 18(4): 314-329, 1988.

 [2] Ha, S., Rhee 1., and Xu L. CUBIC: a new TCP-friendly high-speed
TCP variant. ACM SIGOPS, 2008.

e [3] Cardwell N., Cheng Y., Gunn C.S., Yeganech S.H., and Jacobson, V.
BBR congestion-based congestion control, ACM Queue, 2016.

TCP vs. UDP (1)

* Both use port numbers
— Application-specific construct serving as a communication endpoint
— 16-bit unsigned integer, thus ranging from 0 to 65535
— To provide end-to-end transport

* UDP: User Datagram Protocol
— connectionless
— No acknowledgements
— No retransmissions
— Out of order, duplicates possible

* TCP: Transmission Control Protocol
— Connection-oriented
— Reliable byte-stream channel (in order, all arrive, no duplicates)
— Flow control
— bidirectional

TCP vs. UDP (II)

* TCP 1s used for services with a large data capacity, and a
persistent connection

* UDP 1s more commonly used for quick lookups, and single
use query-replay actions.

* Some common examples of TCP and UDP with their default
ports:

DNS lookup UDP 53
FIP TCP 21
HTTP TCP 80
POP3 1 S [
Telnet cry 23

References

e [1] A.S. Tanenbaum, and D.J. Wetherall, Computer Networks, 5
Edition, Prentice Hall, 2011.

* [2] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-
speed TCP variant,” ACM SIGOPS Operating Systems Review,
42(5): 64-74,2008. (HZ220214E11 H 18 H 51 F124391K)

* [3] N. Cardwell, Y. Cheng, C.S. Gunn, S. H. Yeganeh, and V.
Jacobson, “BBR Congestion-based congestion control — Measuring
bottleneck bandwidth and round-trip propagation time,” ACM
QUEUE, vol.15, no.5, pp.20-53, 2016. (#£20214-11 5 18 H 5| F
588K)

	Transport Layer
	Outline
	Outline
	The Transport Layer
	幻灯片编号 5
	The Relationship of the Network, Transport, and Application Layers
	The Transport Service
	Transit Units of Different Layers
	Outline
	Outline
	The Internet Transport Protocols
	Outline
	Outline
	UDP
	UDP (II)
	UDP (III)
	UDP (IV)
	An UDP Example
	The IPv4 Datagram
	UDP in IPv4 Packet
	UDP (V)
	Real-Time Transport Protocol (I)
	RTP (II)
	The RTP Header (I)
	The RTP Header (II)
	RTCP
	Playout with Buffering and Jitter Control
	Outline
	Outline
	TCP
	The TCP Service Model
	The TCP Service Model (II)
	The TCP Service Model (III)
	Some Assigned Ports for Well-known Applications
	TCP
	TCP
	The TCP Segment Header
	The TCP Segment Header
	The TCP Segment Header (I)
	The TCP Segment Header (II)
	The TCP Segment Header
	The TCP Segment Header (III)
	The TCP Segment Header (IV)
	The TCP Segment Header (V)
	The TCP Segment Header (VI)
	The TCP Segment Header (VII)
	Outline
	Outline
	TCP Connection Establishment: Three Way Handshake
	TCP Connection Establishment (I)
	TCP Connection Establishment (II)
	TCP Connection Establishment (III)
	TCP Connection Establishment: Important Points (I)
	TCP Connection Establishment: Important Points (II)
	TCP Connection Establishment: Important Points (III)
	The IPv4 Datagram
	The TCP Segment Header
	A TCP-SYN Example
	A TCP-SYN-ACK Example
	“SYN Flood” Attack
	The Two-army Problem
	TCP Connection Release
	TCP Connection Release (I)
	TCP Connection Release (II)
	TCP Connection Release (III)
	TCP Connection Management Modeling
	幻灯片编号 70
	Outline
	Outline
	TCP Sliding Window
	A connection for data transmission example (I)
	An Ladder Example (II)
	Another Example
	TCP Sliding Window
	Nagle’s Algorithm
	Clark’s Solution
	The Silly Window Syndrome
	TCP Sliding Window
	Outline
	Outline
	TCP Timer Management
	TCP Timer Management: RTO
	TCP Timer Management: RTO
	TCP Timer Management: RTO
	TCP Timer Management: RTO
	TCP Timer Management: the persistent timer
	TCP Timer Management: the keepalive timer
	TCP Timer Management: the TIME WAIT timer
	Outline
	Outline
	TCP Congestion Control (I)
	TCP Congestion Control (II)
	TCP Congestion Control (III)
	The TCP Segment Header
	TCP Congestion Control (IV)
	TCP Congestion Control (V)
	TCP Congestion Control (VI)
	TCP Start Problem
	Slow-Start Solution (I)
	Slow-Start (Doubling) Timeline
	Slow-Start Solution (II)
	Additive Increase Timeline
	Slow-Start Solution (III)
	Inferring Loss from ACKs
	Fast Retransmission
	TCP Congestion Control: Tahoe (1988)
	TCP Congestion Control: Tahoe (1988)
	Inferring Non-loss from ACKs
	Fast Recovery
	幻灯片编号 121
	幻灯片编号 122
	幻灯片编号 123
	幻灯片编号 124
	幻灯片编号 125
	TCP Congestion Control: Reno
	TCP Congestion Control
	TCP Congestion Control
	TCP Congestion Control
	The TCP Segment Header
	TCP Reno, NewReno, and SACK
	Feedback Signals for Congestion Control
	Outline
	Outline
	BBR Congestion-based Congestion Control
	Slow Start [1]
	Slow Start
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	BBR [3]
	References
	TCP vs. UDP (I)
	TCP vs. UDP (II)
	References

